
Lesson 11: OOP #1, Intro to OOP (W03D3)
Balboa High School

Michael Ferraro

September 2, 2015

1 / 25

mailto:mferraro@balstaff.org


Do Now

In your InteractiveInts project, import this source file: MoreFun.java.
You will need to correct 5 errors in order for it to compile and run properly!

Recapping the steps for importing a source file into a project:

1 Download file to your computer (let’s say to the Desktop)

2 Drag-and-drop the file to your project’s src folder in Eclipse

3 To compile/run, click inside editor pane for MoreFun.java and press
CTRL-F11. . .

2 / 25

http://feromax.com/apcs/lessons/L11/downloads/MoreFun/


Aim

Students will be introduced to OOP [Object-Oriented Programming], a
core concept of Java programming.

3 / 25



PS #1 & #2

PS #1 is due today! Extension needed? Ask via email. Note that
there will be a credit reduction based on the number of additional
days taken, starting at 1 day (-20%).

PS #2 will be available starting next week.

4 / 25

mailto:mferraro@balstaff.org


What is OOP?

OOP, or Object-Oriented Programming, refers to writing programs in
a language that supports objects.

Objects are abstract entities that represent some (possibly) real thing.

Objects maintain information about the things they represent.

It’s a convenient way to manage information that programs need to
work with.

Most popular languages today OOP support included: C++, Java,
Ruby, Perl, etc.

5 / 25



A Playful Example: Martians

Download MartianObjects.pde and save to your desktop

Start Processing in Linux:1

use the Processing launcher in the dock OR
from a terminal shell, type processing &

Open the file: File → Open. . .

Press CTRL-R to run

See if you can figure out how to change the size of the Martians

Can you make a new Martian?

1At home, you might use a web-based Processing environment like
OpenProcessing.org. Copy and paste the contents of the pde file into the code
area and click Run.

6 / 25

http://feromax.com/apcs/lessons/L11/downloads/MartianObjects/
http://openprocessing.org/sketch/create


Programming with Class

A programmer designs and writes classes that define kinds of objects.

Think of a class as a blueprint describing an object’s contents and
behaviors

7 / 25



Our First Class: Person

Discuss: What are attributes/features that all people have?

For example, hairColor is one attribute.

8 / 25



Our First Class: Person

Our simple Person class, represented using a
UML2 diagram:

2Unified Modeling Language
9 / 25



Person.java Defines the Person Class

Create project PeopleAsObjects in current workspace and add
Person.java:

public class Person {

int age;

int weight;

String location;

String fullName;

String greeting;

public Person() {

}

}

Save the file, but don’t compile/run — with no main(), there’s nothing to
do!

10 / 25



Objects are Instances of a Class

When create an object of a particular class, you have created an
instance of that class

How we may speak of objects:

“create an instance of a class”

“instantiante a class into an object”

“an object is an instance of a class”

11 / 25



Objects are Instances of a Class

When create an object of a particular class, you have created an
instance of that class

How we may speak of objects:

“create an instance of a class”

“instantiante a class into an object”

“an object is an instance of a class”

12 / 25



Objects are Instances of a Class

When create an object of a particular class, you have created an
instance of that class

How we may speak of objects:

“create an instance of a class”

“instantiante a class into an object”

“an object is an instance of a class”

13 / 25



Objects are Instances of a Class

When create an object of a particular class, you have created an
instance of that class

How we may speak of objects:

“create an instance of a class”

“instantiante a class into an object”

“an object is an instance of a class”

14 / 25



Objects are Instances of a Class

When create an object of a particular class, you have created an
instance of that class

How we may speak of objects:

“create an instance of a class”

“instantiante a class into an object”

“an object is an instance of a class”

15 / 25



Two Instances of Person

We will create two objects, or instances, of class Person.

16 / 25



Where to Make Objects

Add new file PersonDriver.java to project src folder

Give this file a class declaration and a main() method

17 / 25



PersonDriver.java

public class PersonDriver {

public static void main(String[] args) {

}

}

18 / 25



PersonDriver.java

public class PersonDriver {

public static void main(String[] args) {

← when program runs, create objects!

}

}

19 / 25



PersonDriver.java

public class PersonDriver {

public static void main(String[] args) {

//create the "ralph" instance of Person

Person ralph = new Person();

ralph.age = 7;

ralph.weight = 83;

ralph.location = "Boston, MA";

ralph.fullName = "Ralph W. Emerson";

ralph.greeting = "Heloooo there!";

}

}

20 / 25



Notable Features in PersonDriver

Declaration of an object, ralph, of type Person

Java keyword new

Person() constructor3

Dot notation for setting field/instance variables

3Note that the constructor Person() in Person.java isn’t necessary —
Java automatically provides a no-args constructor for any class if we don’t write
one. We include it for clarity.

21 / 25



Display Object Data

public class PersonDriver {

public static void main(String[] args) {

//create the "ralph" instance of Person

//(code omitted)

System.out.println("Ralph is " + ralph.age + " years old.");

System.out.println("His weight is " + ralph.weight + "lbs");

System.out.println("Unless you know him already, you should " +

"call him " + ralph.fullName);

}

}

Once the above code runs successfully, create an the rhonda instance of Person

according to the “Two Instances of Person” slide, and output the field variables’ values.

22 / 25



Next Class

Next class, you’ll learn how to get and set field variables (also called
instance variables) safely using methods.

23 / 25



PS #1 Sign-Offs

Once you have your PS #1, §5.1 program signed off, turn in your
paper form.

If you’re still working on PS#1, request an extension and keep
working!

24 / 25



HW

If you’re not done with any parts of PS #1, continue working on it.

25 / 25


