
Lesson 15: OOP #5: Overriding Methods (W04D3)
Balboa High School

Michael Ferraro

September 11, 2015

1 / 14

mailto:mferraro@balstaff.org


Do Now

Answer the following (in a text editor):

1 T/F: A subclass inherits the instance variables (fields) of its
superclass. E.g., Teacher has the fields age and greeting from its
superclass, Person.

2 If we add a field variable to Teacher called roomNumber and add a
method that sets to value of roomNumber — without returning any
information — then the method is a(n) method.

3 Consider a new kind of person, a baker. If class Baker has superclass
Person, which of the following is the correct class declaration?

a. public class Person extendsInto Baker { ...}
b. public class Person extendsFrom Baker { ...}
c. public class Baker extends Person { ...}
d. public class Person extends Baker { ...}

2 / 14



Aim

Students will finish learning about class inheritance and make progress on
Problem Set #2.

3 / 14



Recap of Last Class

We created class Teacher, a subclass of Person

Subclasses inherit instance vars/fields and methods of superclass; an
example of code reuse

We added methods to Teacher, making it a richer class than Person

We continued to follow good class design practice: The instance vars
of Teacher are private, meaning that access to the field values are
managed by accessor and mutator methods

4 / 14



Recap of Last Class

We created class Teacher, a subclass of Person

Subclasses inherit instance vars/fields and methods of superclass; an
example of code reuse

We added methods to Teacher, making it a richer class than Person

We continued to follow good class design practice: The instance vars
of Teacher are private, meaning that access to the field values are
managed by accessor and mutator methods

5 / 14



Recap of Last Class

We created class Teacher, a subclass of Person

Subclasses inherit instance vars/fields and methods of superclass; an
example of code reuse

We added methods to Teacher, making it a richer class than Person

We continued to follow good class design practice: The instance vars
of Teacher are private, meaning that access to the field values are
managed by accessor and mutator methods

6 / 14



Recap of Last Class

We created class Teacher, a subclass of Person

Subclasses inherit instance vars/fields and methods of superclass; an
example of code reuse

We added methods to Teacher, making it a richer class than Person

We continued to follow good class design practice: The instance vars
of Teacher are private, meaning that access to the field values are
managed by accessor and mutator methods

7 / 14



Angry Persons

1 Add a method to the Person class called makeAngry(). The method

takes no arguments (input values)

returns no data

prints this to the console:

You have made me, <fullName>, angry. I will get even.

2 Once your method is written, update your driver so that ralph and
teacher1 get angry.

8 / 14



Overriding a Superclass’ Methods

When you make a Teacher angry, Java looks in the Teacher class
for the makeAngry() method; it finds none and next looks to the
superclass (Person) and finds the method.

But let’s say that a Teacher doesn’t get angry in the same way a
normal person does.

In Teacher.java, add a method with the same name as the one you
added to Person.java — makeAngry(). Make this method print
this message to the console:

You have made your teacher, <fullName>, angry. Your

grade has been reduced by 6%.

9 / 14



Overriding a Superclass’ Methods

Problem: Even though Teacher is a subclass of Person, it cannot see
the variable fullName since it’s private! When you write makeAngry()

in the Teacher class, you must get the Teacher’s fullName just like
everyone else:

<object name>.getFullName()

But when you’re writing code inside Teacher.java, you don’t have
knowledge of the instance’s name — you can’t exactly say
“teacher1.getFullName()”.

Solution: The keyword this always refers to the current instance of an
object.

10 / 14



Overriding a Superclass’ Methods

Problem: Even though Teacher is a subclass of Person, it cannot see
the variable fullName since it’s private! When you write makeAngry()

in the Teacher class, you must get the Teacher’s fullName just like
everyone else:

<object name>.getFullName()

But when you’re writing code inside Teacher.java, you don’t have
knowledge of the instance’s name — you can’t exactly say
“teacher1.getFullName()”.

Solution: The keyword this always refers to the current instance of an
object.

11 / 14



Correct makeAngry() Method

In class Teacher:

public void makeAngry() {

System.out.println("You have made your teacher, "

+ this.getFullName()

+ ", angry. Your grade has been reduced by 6%.");

}

12 / 14



Another Correct makeAngry() Method

In class Teacher:

public void makeAngry() {

System.out.println("You have made your teacher, "

+ getFullName()

+ ", angry. Your grade has been reduced by 6%.");

}

13 / 14



For the rest of the period. . .

Write the Student class

Include the Student-specific field variables we discussed earlier

make fields private

write accessor & mutator methods for all fields

Override the makeAngry() method (you choose what happens when
you make a student angry).

Instantiate Student as student1. Show its field values and make it
angry.

Quiz #2 coming up in 2 class days!

Continue working on PS #2.

14 / 14



HW

Continue working on PS #2. You should be able to complete some or all
of §6 by now. If you’re not done with §§1-5 yet, start coming in for
help!

15 / 14


