Lesson 15: OOP #5: Overriding Methods (W04D3)

Balboa High School

Michael Ferraro

September 11, 2015


mailto:mferraro@balstaff.org

Answer the following (in a text editor):

© T/F: A subclass inherits the instance variables (fields) of its
superclass. E.g., Teacher has the fields age and greeting from its
superclass, Person.

@ If we add a field variable to Teacher called roomNumber and add a
method that sets to value of roomNumber — without returning any
information — then the methodisa(n) —_ method.

© Consider a new kind of person, a baker. If class Baker has superclass
Person, which of the following is the correct class declaration?

an oo

public
public
public
public

class Person extendsInto Baker { ...}
class Person extendsFrom Baker { ...}
class Baker extends Person { ...}
class Person extends Baker { ...}



Students will finish learning about class inheritance and make progress on
Problem Set #2.



Recap of Last Class

@ We created class Teacher, a subclass of Person



Recap of Last Class

@ We created class Teacher, a subclass of Person

@ Subclasses inherit instance vars/fields and methods of superclass; an
example of code reuse



Recap of Last Class

@ We created class Teacher, a subclass of Person

@ Subclasses inherit instance vars/fields and methods of superclass; an
example of code reuse

@ We added methods to Teacher, making it a richer class than Person



Recap of Last Class

@ We created class Teacher, a subclass of Person

@ Subclasses inherit instance vars/fields and methods of superclass; an
example of code reuse

@ We added methods to Teacher, making it a richer class than Person

@ We continued to follow good class design practice: The instance vars
of Teacher are private, meaning that access to the field values are
managed by accessor and mutator methods



Angry Persons

© Add a method to the Person class called makeAngry (). The method

e takes no arguments (input values)
e returns no data
e prints this to the console:

You have made me, <fulllName>, angry. I will get even.

@ Once your method is written, update your driver so that ralph and
teacherl get angry.



Overriding a Superclass’ Methods

@ When you make a Teacher angry, Java looks in the Teacher class
for the makeAngry () method; it finds none and next looks to the
superclass (Person) and finds the method.

@ But let's say that a Teacher doesn't get angry in the same way a
normal person does.

@ In Teacher. java, add a method with the same name as the one you
added to Person. java — makeAngry (). Make this method print
this message to the console:

You have made your teacher, <fullName>, angry. Your
grade has been reduced by 6%.



Overriding a Superclass’ Methods

Problem: Even though Teacher is a subclass of Person, it cannot see
the variable fullName since it's private! When you write makeAngry ()
in the Teacher class, you must get the Teacher’s fullName just like
everyone else:

<object_name>.getFullName ()

But when you're writing code inside Teacher. java, you don't have
knowledge of the instance's name — you can’t exactly say
“teacherl.getFullName()".

10/14



Overriding a Superclass’ Methods

Problem: Even though Teacher is a subclass of Person, it cannot see
the variable fullName since it's private! When you write makeAngry ()
in the Teacher class, you must get the Teacher’s fullName just like
everyone else:

<object_name>.getFullName ()
But when you're writing code inside Teacher. java, you don't have
knowledge of the instance's name — you can’t exactly say

“teacherl.getFullName()".

Solution: The keyword this always refers to the current instance of an
object.

11/14



Correct makeAngry () Method

In class Teacher:

public void makeAngry() {
System.out.println("You have made your teacher, "
+ this.getFullName ()
+ ", angry. Your grade has been reduced by 6%.");

12/14



Another Correct makeAngry () Method

In class Teacher:

public void makeAngry() {
System.out.println("You have made your teacher, "
+ getFullName ()
+ ", angry. Your grade has been reduced by 6%.");

13/14



For the rest of the period. ..

@ Write the Student class

o Include the Student-specific field variables we discussed earlier

@ make fields private
@ write accessor & mutator methods for all fields

o Override the makeAngry () method (you choose what happens when
you make a student angry).

o Instantiate Student as studentl. Show its field values and make it
angry.

@ Quiz #2 coming up in 2 class days!

@ Continue working on PS #2.

14 /14



Continue working on PS #2. You should be able to complete some or all

of §6 by now. If you’re not done with §51-5 yet, start coming in for
help!

15/14



