
Lesson 42: Craps Lab #2 (W12D3)
Balboa High School

Michael Ferraro

November 4, 2015

1 / 24

mailto:mferraro@balstaff.org

Do Now

1 Create class RandomInts in new project Lesson42.

public class RandomInts {

public static void main(String[] args) {

double a = Math.random();

System.out.println(a);

}

}

2 Enhance the main() so that it prints a random number on the screen
exactly 17 times using a for() loop.

2 / 24

Aim

Students will receive a short lesson on random number generation for use
with the Craps Lab and have time to work on §5 of PS #6.

3 / 24

What’s Math.random()?

Q: How does Math.random() appear to work?

A: Returns a double from [0.0 → 1.0) 1

The Math.random() API is here.

Taming the beast: How might we get this method to return an
integer between 1 and 8, for example?

Multiplication and casting!

1Note the right parenthesis after 1.0 — that means the range is not inclusive
of the value 1.0. So 0.9999999 is a possible return value.

4 / 24

http://docs.oracle.com/javase/8/docs/api/java/lang/Math.html#random--

What’s Math.random()?

Q: How does Math.random() appear to work?

A: Returns a double from [0.0 → 1.0) 1

The Math.random() API is here.

Taming the beast: How might we get this method to return an
integer between 1 and 8, for example?

Multiplication and casting!

1Note the right parenthesis after 1.0 — that means the range is not inclusive
of the value 1.0. So 0.9999999 is a possible return value.

5 / 24

http://docs.oracle.com/javase/8/docs/api/java/lang/Math.html#random--

What’s Math.random()?

Q: How does Math.random() appear to work?

A: Returns a double from [0.0 → 1.0) 1

The Math.random() API is here.

Taming the beast: How might we get this method to return an
integer between 1 and 8, for example?

Multiplication and casting!

1Note the right parenthesis after 1.0 — that means the range is not inclusive
of the value 1.0. So 0.9999999 is a possible return value.

6 / 24

http://docs.oracle.com/javase/8/docs/api/java/lang/Math.html#random--

What’s Math.random()?

Q: How does Math.random() appear to work?

A: Returns a double from [0.0 → 1.0) 1

The Math.random() API is here.

Taming the beast: How might we get this method to return an
integer between 1 and 8, for example?

Multiplication and casting!

1Note the right parenthesis after 1.0 — that means the range is not inclusive
of the value 1.0. So 0.9999999 is a possible return value.

7 / 24

http://docs.oracle.com/javase/8/docs/api/java/lang/Math.html#random--

Making Math.random() Useful

Consider what would happen to the return value of Math.random() if we
multipled by 8. . .

8 * Math.random()

8 * [0.0 → 0.9]

[0.0 → 7.9]

Now cast that result into an int:

(int)[0.0 → 7.9]

[0 → 7]

So multiplying Math.random() by 8 and then casting into an int gives 8
discrete values: {0, 1, 2, 3, 4, 5, 6, 7}. If we want the integers 1 → 8, add 1:

(int)(8 * Math.random()) + 1

gives {1, 2, 3, 4, 5, 6, 7, 8}

8 / 24

Making Math.random() Useful

Consider what would happen to the return value of Math.random() if we
multipled by 8. . .

8 * Math.random()

8 * [0.0 → 0.9]

[0.0 → 7.9]

Now cast that result into an int:

(int)[0.0 → 7.9]

[0 → 7]

So multiplying Math.random() by 8 and then casting into an int gives 8
discrete values: {0, 1, 2, 3, 4, 5, 6, 7}. If we want the integers 1 → 8, add 1:

(int)(8 * Math.random()) + 1

gives {1, 2, 3, 4, 5, 6, 7, 8}

9 / 24

Making Math.random() Useful

Consider what would happen to the return value of Math.random() if we
multipled by 8. . .

8 * Math.random()

8 * [0.0 → 0.9]

[0.0 → 7.9]

Now cast that result into an int:

(int)[0.0 → 7.9]

[0 → 7]

So multiplying Math.random() by 8 and then casting into an int gives 8
discrete values: {0, 1, 2, 3, 4, 5, 6, 7}. If we want the integers 1 → 8, add 1:

(int)(8 * Math.random()) + 1

gives {1, 2, 3, 4, 5, 6, 7, 8}

10 / 24

Making Math.random() Useful

Consider what would happen to the return value of Math.random() if we
multipled by 8. . .

8 * Math.random()

8 * [0.0 → 0.9]
[0.0 → 7.9]

Now cast that result into an int:

(int)[0.0 → 7.9]

[0 → 7]

So multiplying Math.random() by 8 and then casting into an int gives 8
discrete values: {0, 1, 2, 3, 4, 5, 6, 7}. If we want the integers 1 → 8, add 1:

(int)(8 * Math.random()) + 1

gives {1, 2, 3, 4, 5, 6, 7, 8}

11 / 24

Making Math.random() Useful

Consider what would happen to the return value of Math.random() if we
multipled by 8. . .

8 * Math.random()

8 * [0.0 → 0.9]
[0.0 → 7.9]

Now cast that result into an int:

(int)[0.0 → 7.9]

[0 → 7]

So multiplying Math.random() by 8 and then casting into an int gives 8
discrete values: {0, 1, 2, 3, 4, 5, 6, 7}. If we want the integers 1 → 8, add 1:

(int)(8 * Math.random()) + 1

gives {1, 2, 3, 4, 5, 6, 7, 8}

12 / 24

Making Math.random() Useful

Consider what would happen to the return value of Math.random() if we
multipled by 8. . .

8 * Math.random()

8 * [0.0 → 0.9]
[0.0 → 7.9]

Now cast that result into an int:

(int)[0.0 → 7.9]

[0 → 7]

So multiplying Math.random() by 8 and then casting into an int gives 8
discrete values: {0, 1, 2, 3, 4, 5, 6, 7}. If we want the integers 1 → 8, add 1:

(int)(8 * Math.random()) + 1

gives {1, 2, 3, 4, 5, 6, 7, 8}

13 / 24

Making Math.random() Useful

Consider what would happen to the return value of Math.random() if we
multipled by 8. . .

8 * Math.random()

8 * [0.0 → 0.9]
[0.0 → 7.9]

Now cast that result into an int:

(int)[0.0 → 7.9]
[0 → 7]

So multiplying Math.random() by 8 and then casting into an int gives 8
discrete values: {0, 1, 2, 3, 4, 5, 6, 7}. If we want the integers 1 → 8, add 1:

(int)(8 * Math.random()) + 1

gives {1, 2, 3, 4, 5, 6, 7, 8}

14 / 24

Making Math.random() Useful

Consider what would happen to the return value of Math.random() if we
multipled by 8. . .

8 * Math.random()

8 * [0.0 → 0.9]
[0.0 → 7.9]

Now cast that result into an int:

(int)[0.0 → 7.9]
[0 → 7]

So multiplying Math.random() by 8 and then casting into an int gives 8
discrete values: {0, 1, 2, 3, 4, 5, 6, 7}. If we want the integers 1 → 8, add 1:

(int)(8 * Math.random()) + 1

gives {1, 2, 3, 4, 5, 6, 7, 8}

15 / 24

Making Math.random() Useful

Consider what would happen to the return value of Math.random() if we
multipled by 8. . .

8 * Math.random()

8 * [0.0 → 0.9]
[0.0 → 7.9]

Now cast that result into an int:

(int)[0.0 → 7.9]
[0 → 7]

So multiplying Math.random() by 8 and then casting into an int gives 8
discrete values: {0, 1, 2, 3, 4, 5, 6, 7}. If we want the integers 1 → 8, add 1:

(int)(8 * Math.random()) + 1

gives {1, 2, 3, 4, 5, 6, 7, 8}

16 / 24

Making Math.random() Useful

Consider what would happen to the return value of Math.random() if we
multipled by 8. . .

8 * Math.random()

8 * [0.0 → 0.9]
[0.0 → 7.9]

Now cast that result into an int:

(int)[0.0 → 7.9]
[0 → 7]

So multiplying Math.random() by 8 and then casting into an int gives 8
discrete values: {0, 1, 2, 3, 4, 5, 6, 7}. If we want the integers 1 → 8, add 1:

(int)(8 * Math.random()) + 1

gives {1, 2, 3, 4, 5, 6, 7, 8}

17 / 24

You Try!

This method for getting Java to return random ints will be on the
AP exam!

Modify your Do Now class to produce random ints from 1 to 10,
inclusive. If you get stuck, follow the sequence from the last slide.
Also, think about how many discrete values you need.

18 / 24

Yet Another Way. . .

There’s another way to generate random integers: java.util.Random

Add an import statement at the top of your class.

Before your for() loop, create a Random object:
Random r = new Random();

Inside your for() loop, call nextInt():
a = r.nextInt(7);

See what the range of output values is and adjust that last line of
code so that your range is from 1 to 8.

19 / 24

Yet Another Way. . .

There’s another way to generate random integers: java.util.Random

Add an import statement at the top of your class.

Before your for() loop, create a Random object:
Random r = new Random();

Inside your for() loop, call nextInt():
a = r.nextInt(7);

See what the range of output values is and adjust that last line of
code so that your range is from 1 to 8.

20 / 24

Yet Another Way. . .

There’s another way to generate random integers: java.util.Random

Add an import statement at the top of your class.

Before your for() loop, create a Random object:
Random r = new Random();

Inside your for() loop, call nextInt():
a = r.nextInt(7);

See what the range of output values is and adjust that last line of
code so that your range is from 1 to 8.

21 / 24

Yet Another Way. . .

There’s another way to generate random integers: java.util.Random

Add an import statement at the top of your class.

Before your for() loop, create a Random object:
Random r = new Random();

Inside your for() loop, call nextInt():
a = r.nextInt(7);

See what the range of output values is and adjust that last line of
code so that your range is from 1 to 8.

22 / 24

Yet Another Way. . .

There’s another way to generate random integers: java.util.Random

Add an import statement at the top of your class.

Before your for() loop, create a Random object:
Random r = new Random();

Inside your for() loop, call nextInt():
a = r.nextInt(7);

See what the range of output values is and adjust that last line of
code so that your range is from 1 to 8.

23 / 24

Next. . .

The rest of the period is yours to work on PS #6

I’ll run the autotester later for the §4 problems so you can find out
whether your solutions are OK.

24 / 24

HW

Finish §5 of PS #6 and all prior sections.

25 / 24

