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© Create class RandomInts in new project Lesson42.

public class RandomInts {

public static void main(String[] args) {
double a = Math.random();
System.out.println(a);

@ Enhance the main() so that it prints a random number on the screen
exactly 17 times using a for () loop.



Students will receive a short lesson on random number generation for use
with the Craps Lab and have time to work on §5 of PS #6.



What's Math.random()?

@ Q: How does Math.random() appear to work?

!Note the right parenthesis after 1.0 — that means the range is not inclusive
of the value 1.0. So 0.9999999 is a possible return value.


http://docs.oracle.com/javase/8/docs/api/java/lang/Math.html#random--
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@ Q: How does Math.random() appear to work?
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@ The Math.random() API is here.
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What's Math.random()?

Q: How does Math.random() appear to work?

A: Returns a double from [ 0.0 — 1.0 ) !

@ The Math.random() API is here.

Taming the beast: How might we get this method to return an
integer between 1 and 8, for example?

Multiplication and casting!

'Note the right parenthesis after 1.0 — that means the range is not inclusive
of the value 1.0. So 0.9999999 is a possible return value.


http://docs.oracle.com/javase/8/docs/api/java/lang/Math.html#random--

Making Math.random() Useful

Consider what would happen to the return value of Math.random() if we
multipled by 8. ..
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8 * Math.random()
8 * [0.0—0.9]
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8 * Math.random()
8 * [0.0—0.9]
[0.0—79]

Now cast that result into an int:

(int)[ 0.0 -+ 7.9 ]
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So multiplying Math.random() by 8 and then casting into an int gives 8
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Making Math.random() Useful

Consider what would happen to the return value of Math.random() if we
multipled by 8. ..

8 * Math.random()
8 * [0.0—0.9]
[0.0—79]

Now cast that result into an int:

(int)[ 0.0 -+ 7.9 ]
[0—=7]

So multiplying Math.random() by 8 and then casting into an int gives 8
discrete values: {0,1,2,3,4,5,6,7}. If we want the integers 1 — 8, add 1:

(int) ( 8 * Math.random() ) + 1
gives {1,2,3,4,5,6,7,8}
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@ This method for getting Java to return random ints will be on the
AP exam!

@ Modify your Do Now class to produce random ints from 1 to 10,
inclusive. If you get stuck, follow the sequence from the last slide.
Also, think about how many discrete values you need.
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Yet Another Way. . .

There's another way to generate random integers: java.util.Random
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Yet Another Way. . .

There's another way to generate random integers: java.util.Random

@ Add an import statement at the top of your class.

@ Before your for() loop, create a Random object:
Random r = new Random();

@ Inside your for () loop, call nextInt():
a = r.nextInt(7);

@ See what the range of output values is and adjust that last line of
code so that your range is from 1 to 8.
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@ The rest of the period is yours to work on PS #6

@ I'll run the autotester later for the §4 problems so you can find out
whether your solutions are OK.
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Finish §5 of PS #6 and all prior sections.

25 /24



