Lesson 42: Craps Lab #2 (W12D3)

Balboa High School

Michael Ferraro

November 4, 2015

mailto:mferraro@balstaff.org

© Create class RandomInts in new project Lesson42.

public class RandomInts {

public static void main(String[] args) {
double a = Math.random();
System.out.println(a);

@ Enhance the main() so that it prints a random number on the screen
exactly 17 times using a for () loop.

Students will receive a short lesson on random number generation for use
with the Craps Lab and have time to work on §5 of PS #6.

What's Math.random()?

@ Q: How does Math.random() appear to work?

!Note the right parenthesis after 1.0 — that means the range is not inclusive
of the value 1.0. So 0.9999999 is a possible return value.

http://docs.oracle.com/javase/8/docs/api/java/lang/Math.html#random--

What's Math.random()?

@ Q: How does Math.random() appear to work?

@ A: Returns a double from [0.0 - 1.0) !

!Note the right parenthesis after 1.0 — that means the range is not inclusive
of the value 1.0. So 0.9999999 is a possible return value.

http://docs.oracle.com/javase/8/docs/api/java/lang/Math.html#random--

What's Math.random()?

@ Q: How does Math.random() appear to work?
@ A: Returns a double from [0.0 - 1.0) !

@ The Math.random() API is here.

'Note the right parenthesis after 1.0 — that means the range is not inclusive
of the value 1.0. So 0.9999999 is a possible return value.

http://docs.oracle.com/javase/8/docs/api/java/lang/Math.html#random--

What's Math.random()?

Q: How does Math.random() appear to work?

A: Returns a double from [0.0 — 1.0) !

@ The Math.random() API is here.

Taming the beast: How might we get this method to return an
integer between 1 and 8, for example?

Multiplication and casting!

'Note the right parenthesis after 1.0 — that means the range is not inclusive
of the value 1.0. So 0.9999999 is a possible return value.

http://docs.oracle.com/javase/8/docs/api/java/lang/Math.html#random--

Making Math.random() Useful

Consider what would happen to the return value of Math.random() if we
multipled by 8. ..

Making Math.random() Useful

Consider what would happen to the return value of Math.random() if we
multipled by 8. ..

8 * Math.random()

Making Math.random() Useful

Consider what would happen to the return value of Math.random() if we
multipled by 8. ..

8 * Math.random()
8 * [0.0—0.9]

10/24

Making Math.random() Useful

Consider what would happen to the return value of Math.random() if we
multipled by 8. ..

8 * Math.random()
8 * [0.0—0.9]
[0.0—79]

11/24

Making Math.random() Useful

Consider what would happen to the return value of Math.random() if we
multipled by 8. ..

8 * Math.random()
8 * [0.0—0.9]
[0.0—79]

Now cast that result into an int:

12/24

Making Math.random() Useful

Consider what would happen to the return value of Math.random() if we
multipled by 8. ..

8 * Math.random()
8 * [0.0—0.9]
[0.0—79]

Now cast that result into an int:

(int)[0.0 = 7.9]

13/24

Making Math.random() Useful

Consider what would happen to the return value of Math.random() if we
multipled by 8. ..

8 * Math.random()
8 * [0.0—0.9]
[0.0—79]

Now cast that result into an int:

(int)[0.0 -+ 7.9]
[0—=7]

14 /24

Making Math.random() Useful

Consider what would happen to the return value of Math.random() if we
multipled by 8. ..

8 * Math.random()
8 * [0.0—0.9]
[0.0—79]

Now cast that result into an int:

(int)[0.0 -+ 7.9]
[0—=7]

So multiplying Math.random() by 8 and then casting into an int gives 8
discrete values: {0,1,2,3,4,5,6,7}. If we want the integers 1 — 8, add 1:

15 /24

Making Math.random() Useful

Consider what would happen to the return value of Math.random() if we
multipled by 8. ..

8 * Math.random()
8 * [0.0—0.9]
[0.0—79]

Now cast that result into an int:

(int)[0.0 -+ 7.9]
[0—=7]

So multiplying Math.random() by 8 and then casting into an int gives 8
discrete values: {0,1,2,3,4,5,6,7}. If we want the integers 1 — 8, add 1:

(int) (8 * Math.random()) + 1

16 /24

Making Math.random() Useful

Consider what would happen to the return value of Math.random() if we
multipled by 8. ..

8 * Math.random()
8 * [0.0—0.9]
[0.0—79]

Now cast that result into an int:

(int)[0.0 -+ 7.9]
[0—=7]

So multiplying Math.random() by 8 and then casting into an int gives 8
discrete values: {0,1,2,3,4,5,6,7}. If we want the integers 1 — 8, add 1:

(int) (8 * Math.random()) + 1
gives {1,2,3,4,5,6,7,8}

17 /24

@ This method for getting Java to return random ints will be on the
AP exam!

@ Modify your Do Now class to produce random ints from 1 to 10,
inclusive. If you get stuck, follow the sequence from the last slide.
Also, think about how many discrete values you need.

18 /24

Yet Another Way. . .

There's another way to generate random integers: java.util.Random

19/24

Yet Another Way. . .

There's another way to generate random integers: java.util.Random

@ Add an import statement at the top of your class.

20 /24

Yet Another Way. . .

There's another way to generate random integers: java.util.Random

@ Add an import statement at the top of your class.

@ Before your for() loop, create a Random object:
Random r = new Random();

21/24

Yet Another Way. . .

There's another way to generate random integers: java.util.Random

@ Add an import statement at the top of your class.

@ Before your for() loop, create a Random object:
Random r = new Random();

@ Inside your for () loop, call nextInt():
a = r.nextInt(7);

22/24

Yet Another Way. . .

There's another way to generate random integers: java.util.Random

@ Add an import statement at the top of your class.

@ Before your for() loop, create a Random object:
Random r = new Random();

@ Inside your for () loop, call nextInt():
a = r.nextInt(7);

@ See what the range of output values is and adjust that last line of
code so that your range is from 1 to 8.

23 /24

@ The rest of the period is yours to work on PS #6

@ I'll run the autotester later for the §4 problems so you can find out
whether your solutions are OK.

24 /24

Finish §5 of PS #6 and all prior sections.

25 /24

