
Lesson 51: Passing by Value vs. Reference (W17D1)
Balboa High School

Michael Ferraro

December 7, 2015

1 / 1

mailto:mferraro@balstaff.org

Do Now

Predict the output of the snippet below, and then test your prediction.

Fraction frxn = new Fraction();

for (int i = 1 ; i <= 3 ; i++) {

frxn = frxn.add(new Fraction(i, 10));

}

System.out.println(frxn.getValue());

Afterward, figure out about how many Fraction objects were in memory
just before your program terminated.

2 / 1

Aim

Students will learn the difference between passing primitives versus objects
as parameters to methods.

3 / 1

Recall from last lesson. . .

Last lesson’s “Do Now” was used to illustrate a point.

double a = -2.353;

double b = a;

a *= -1;

System.out.println("a = " + a);

System.out.println("b = " + b);

a and b retained distinct values. These primitive variables hold only
values, not pointers/references to objects somewhere in memory.
Therefore, changing one doesn’t change the other, even though — at one
time — one was set equal to the other (i.e., double b = a).

4 / 1

Recall from last lesson. . .

The situation for objects is different.

Fraction f1 = new Fraction(2, 9);

Fraction f2 = f1;

f2.num = 3; //changes obj f1 is referring to, too!

f1.reduce(); //changes obj that f2 points to!

System.out.println("f1 = " + f1);

System.out.println("f2 = " + f2);

When it comes to objects, the variables don’t hold values, but instead hold
memory locations, or references to objects. So when one is set equal to
another (i.e., Fraction f2 = f1), that causes both variables to point to
the same object. Therefore, changing one really changes “both” (but there
aren’t really two objects!).

5 / 1

When Primitives are Parameters

Predict the output of the class below.

public class PrimitiveParameter {

public static void signFlipper(int n) {

n *= -1;

}

public static void main(String[] args) {

int p = 9;

signFlipper(p);

System.out.println(p);

}

}

6 / 1

When Primitives are Parameters

Why didn’t p’s value change when we sent p to signFlipper() as an
argument?

7 / 1

When Primitives are Parameters

Why didn’t p’s value change when we sent p to signFlipper() as an
argument?

Because we sent p’s value, not p itself! If you change the value 9, you
aren’t really changing p.

8 / 1

When Primitives are Parameters

Why didn’t p’s value change when we sent p to signFlipper() as an
argument?

Because we sent p’s value, not p itself! If you change the value 9, you
aren’t really changing p.

→ When you send a primitive as an argument, you are passing the

method its value; this is called pass by value.

9 / 1

When Objects are Parameters

1 Create a new project called Lesson51.

2 Download and import Coordinates*.java from here.

3 Read over class Coordinates and its driver class; Ask any questions
you have.

4 Predict the output of running CoordinatesDriver.

5 Run the driver class.

6 Prepare an explanation for why the output is as it is. Be sure to
compare/contrast the result with what we observed earlier for
primitive parameters.

10 / 1

http://feromax.com/apcs/lessons/L51/downloads/

When Objects are Parameters

11 / 1

When Objects are Parameters

12 / 1

When Objects are Parameters

13 / 1

When Objects are Parameters

14 / 1

When Objects are Parameters

15 / 1

When Objects are Parameters

16 / 1

When Objects are Parameters

17 / 1

When Objects are Parameters

When an object is an argument to a method, a reference to that object is
sent. So when the method modifies the object via its reference, it’s really
changing the same object in memory that was sent.

We say that objects are passed by reference to methods. This is
potentially dangerous!

18 / 1

When Objects are Parameters

Sending along a reference to an object could be dangerous if the method
that is called modifies the object pointed to by the reference. How might
you safeguard against that?

19 / 1

When Objects are Parameters

Sending along a reference to an object could be dangerous if the method
that is called modifies the object pointed to by the reference. How might
you safeguard against that?

Solution: Send along a reference to a copy of the original object — using
a copy constructor!

20 / 1

When Objects are Parameters

Sending along a reference to an object could be dangerous if the method
that is called modifies the object pointed to by the reference. How might
you safeguard against that?

Solution: Send along a reference to a copy of the original object — using
a copy constructor!

Exercise: Make an idential copy of the pt instance of Coordinates and
send that copy to shiftRight(). You’ll need to add a second constructor
to Coordinates, however:

public Coordinates(Coordinates myPt)

21 / 1

Next. . .

Make sure you’re not falling behind on PS #9! You should have
finished through §5 by now.

Now you should work on these sections:

§6: Method Definitions (Litvin §10.5)
§7: Three Ways to Call Methods (Litvin §10.6)
§8: Pass by Value vs. Pass by Reference (Litvin §10.7)
§9: Use of return (Litvin §10.8)

Make sure you finish the sections listed above within the next two
classes (i.e., those sections are your HW).

Next class: SnackBar!

22 / 1

HW

§6: Method Definitions (Litvin §10.5)

§7: Three Ways to Call Methods (Litvin §10.6)

§8: Pass by Value vs. Pass by Reference (Litvin §10.7)

§9: Use of return (Litvin §10.8)

23 / 1

