
Lesson 59: File I/O (W20D1)
Balboa High School

Michael Ferraro

January 11, 2016

1 / 32

mailto:mferraro@balstaff.org


Do Now

3−4min: Read over §§11.2−11.3 from PS #10,
the FileRewinder and Animals exercises.

2 / 32



Aim

Students will learn the structure of text files and the basics of File I/O in
Java.

3 / 32



File I/O

Input: Reading from files

Output: Writing to files

Two types of files

Text Files

contain human-readable characters (i.e., those that can be typed using
a keyboard)

may be opened with a text editor

may be read/edited by programs and people

4 / 32



File I/O

Input: Reading from files

Output: Writing to files

Two types of files

Text Files

contain human-readable characters (i.e., those that can be typed using
a keyboard)

may be opened with a text editor

may be read/edited by programs and people

5 / 32



File I/O

Input: Reading from files

Output: Writing to files

Two types of files

Text Files

contain human-readable characters (i.e., those that can be typed using
a keyboard)

may be opened with a text editor

may be read/edited by programs and people

6 / 32



File I/O

Input: Reading from files

Output: Writing to files

Two types of files

Text Files

contain human-readable characters (i.e., those that can be typed using
a keyboard)

may be opened with a text editor

may be read/edited by programs and people

7 / 32



File I/O

Input: Reading from files

Output: Writing to files

Two types of files

Text Files

contain human-readable characters (i.e., those that can be typed using
a keyboard)

may be opened with a text editor

may be read/edited by programs and people

8 / 32



File I/O

Input: Reading from files

Output: Writing to files

Two types of files

Text Files

contain human-readable characters (i.e., those that can be typed using
a keyboard)

may be opened with a text editor

may be read/edited by programs and people

9 / 32



File I/O

Input: Reading from files

Output: Writing to files

Two types of files

Text Files

contain human-readable characters (i.e., those that can be typed using
a keyboard)

may be opened with a text editor

may be read/edited by programs and people

10 / 32



File I/O

Input: Reading from files

Output: Writing to files

Two types of files

Binary Files

are not human-readable, though special editors can be used to interpret
the content

are typically read and used by programs

e.g., MS Word documents are saved in a specific binary format

11 / 32



File I/O

Input: Reading from files

Output: Writing to files

Two types of files

Binary Files

are not human-readable, though special editors can be used to interpret
the content

are typically read and used by programs

e.g., MS Word documents are saved in a specific binary format

12 / 32



File I/O

Input: Reading from files

Output: Writing to files

Two types of files

Binary Files

are not human-readable, though special editors can be used to interpret
the content

are typically read and used by programs

e.g., MS Word documents are saved in a specific binary format

13 / 32



File I/O

Input: Reading from files

Output: Writing to files

Two types of files

Binary Files

are not human-readable, though special editors can be used to interpret
the content

are typically read and used by programs

e.g., MS Word documents are saved in a specific binary format

14 / 32



File I/O

Input: Reading from files

Output: Writing to files

Two types of files

Most programming languages provide mechanisms for these text file
operations (and more for binary files):

create

open for reading/writing/appending

close

read (a character, a line, the whole file)

write (a character, a line, multiple lines)

append, or add to the end of a file

15 / 32



File I/O

Input: Reading from files

Output: Writing to files

Two types of files

Most programming languages provide mechanisms for these text file
operations (and more for binary files):

create

open for reading/writing/appending

close

read (a character, a line, the whole file)

write (a character, a line, multiple lines)

append, or add to the end of a file

16 / 32



File I/O

Input: Reading from files

Output: Writing to files

Two types of files

Most programming languages provide mechanisms for these text file
operations (and more for binary files):

create

open for reading/writing/appending

close

read (a character, a line, the whole file)

write (a character, a line, multiple lines)

append, or add to the end of a file

17 / 32



File I/O

Input: Reading from files

Output: Writing to files

Two types of files

Most programming languages provide mechanisms for these text file
operations (and more for binary files):

create

open for reading/writing/appending

close

read (a character, a line, the whole file)

write (a character, a line, multiple lines)

append, or add to the end of a file

18 / 32



File I/O

Input: Reading from files

Output: Writing to files

Two types of files

Most programming languages provide mechanisms for these text file
operations (and more for binary files):

create

open for reading/writing/appending

close

read (a character, a line, the whole file)

write (a character, a line, multiple lines)

append, or add to the end of a file

19 / 32



File I/O

Input: Reading from files

Output: Writing to files

Two types of files

Most programming languages provide mechanisms for these text file
operations (and more for binary files):

create

open for reading/writing/appending

close

read (a character, a line, the whole file)

write (a character, a line, multiple lines)

append, or add to the end of a file

20 / 32



File I/O

Input: Reading from files

Output: Writing to files

Two types of files

Most programming languages provide mechanisms for these text file
operations (and more for binary files):

create

open for reading/writing/appending

close

read (a character, a line, the whole file)

write (a character, a line, multiple lines)

append, or add to the end of a file

21 / 32



Text File I/O in Java

Litvin §§15.1−15.4 provide a fairly complete overview of working with text
files (highly recommended reading!).

22 / 32



Composition of a Text File

Hello, this is my text file.<EOL>

<EOL>

Eating grapes makes me happy.<EOL>

I like apples, too.<EOL>

<EOF>

EOL: End-of-line marker

\n on *nix systems
\r on Apple systems1

\r\n on Windows/DOS systems

EOF: End-of-file marker; how a program can tell it has reached the end

1 \r is carriage return
23 / 32



Text File Operations: Basics

You cannot read and write to a file simultaneously! The JVM will ask
the OS to open a file for reading OR writing, not both.

If you write to a filename that doesn’t exist, a new, empty file will be
created.

If you read from a non-existent file, an exception will be thrown.

When you open a file handle for reading/writing, you must close the
handle when you’re finished.

These concepts are portable2 to many other languages!

2I.e., these ideas are valid for use with other languages, like BASIC, PERL,
PHP, C, etc.

24 / 32



Example #1: Reading from a Text File

1 Create a new project: FileIO.

2 Import Ex1FileReader.java from here.

3 Download blah.txt from the same directory as above, and save in
project FileIO’s working directory,
∼/MOUNTED/apcs-locker/workspace2/FileIO 3

4 Try to fix the error! (You need to catch an exception.)

5 Once fixed, run the program.

6 Works? Now rename blah.txt to some other name and run again.

3The working directory is where Eclipse will look for files we try to open in
case we don’t specify a directory.

25 / 32

http://feromax.com/apcs/lessons/L59/downloads/


Example #2: Writing to a New Text File

1 Import Ex2FileCreator.java from here. DO NOT RUN YET!

2 Read through the source code. Note that the PrintWriter class
supplies a println() method.

3 Use Nautilus to view the contents of the FileIO folder.

4 Run Ex2FileCreator. Was an output file generated?
(See Nautilus window.)

5 Open up the CSV4 file in a text editor, make changes, and save.

6 Re-run Ex2FileCreator. Open the CSV file. What do you notice?

continued on next slide →

4comma-separated values; very common way to export spreadsheet and
database data to a text file for reading/loading elsewhere.

26 / 32

http://feromax.com/apcs/lessons/L59/downloads/


Example #2: Writing to a New Text File

7. Make the file read-only: Right-click on the file in Nautilus, properties
→ permissions tab → uncheck write for file owner.

8. What happens when you re-run the program?

9. Start LibreOffice Calc (≈MS Excel).

1 Open the CSV file that was generated. Tell Calc that the text in the
file is a set of comma-separated values 5

2 Select columns A & B, click Insert→Chart, and create an x − y
scatterplot.

5 ‘\t’, or tab, characters are also valid for separating columns of data!
27 / 32



Example #3: Appending to a Text File

Appending to a file is comparable to concatenating to an existing
String.

Process is slightly different:

1 Create a Writer object using a FileWriter constructor.

2 Catch the IOException that the FileWriter constructor may throw.

3 Create a PrintWriter object, sending the Writer you created to its
constructor (no need to catch a FileNotFoundException this time).

4 Use the PrintWriter object’s methods — e.g., println() — to send
data to the Writer, which in turns appends the data to the text file.

5 close() the PrintWriter.

28 / 32



Example #3: Appending to a Text File

1 Import Ex3FileAppender.java from here. DO NOT RUN YET!

2 Examine its contents, taking note of how the process on the last slide
is implemented.

3 View the contents of output.csv PRIOR to running the class.

4 Run Ex3FileAppender.

5 See how the contents of output.csv have changed. As before, have
Calc graph the contents as an x − y scatterplot.

29 / 32

http://feromax.com/apcs/lessons/L59/downloads/


Challenge: Prepending a File

Write a class that takes the data from output.csv and prepends rows to
its data so that, when graphed, there’s a symmetrical parabola (i.e., the
domain is −9 ≤ x ≤ 9).

You should write the resulting data set to a different file.

30 / 32



If time allows. . .

Live demonstration of how another language handles File I/O: PERL

31 / 32



HW

You should already be done with most of PS #10, §§1-10, inclusive

Today’s lesson and the textbook reading should allow you to complete
the remaining sections.

Be mindful of the due date and don’t procrastinate!

32 / 32


